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Model 

Response variable: Rent 

Predictor variable: allrent cows pasture liming 

Obs rent allrent cows pasture liming 

1 18.38 15.5 17.25 0.24 0 

2 20 22.29 18.51 0.2 1 

3 11.5 12.36 11.13 0.12 0 

4 25 31.84 5.54 0.12 1 

5 52.5 83.9 5.44 0.04 0 

6 82.5 72.25 20.37 0.05 1 

7 25 27.14 31.2 0.27 0 

8 30.67 40.41 4.29 0.1 1 

9 12 12.42 8.69 0.41 0 

10 61.25 69.42 6.63 0.04 1 

11 60 48.46 27.4 0.12 0 

12 57.5 69 31.23 0.08 0 

13 31 26.09 28.5 0.21 1 

14 60 62.83 29.98 0.17 0 

15 72.5 77.06 13.59 0.05 0 

16 60.33 58.83 45.46 0.16 0 

17 49.75 59.48 35.9 0.32 0 

18 8.5 9 8.89 0.08 0 

19 36.5 20.64 23.81 0.24 0 

20 60 81.4 4.54 0.05 1 

21 16.25 18.92 29.62 0.72 0 

22 50 50.32 21.36 0.19 1 

23 11.5 21.33 1.53 0.1 1 

24 35 46.85 5.42 0.08 1 

25 75 65.94 22.1 0.09 0 

26 31.56 38.68 14.55 0.17 1 

27 48.5 51.19 7.59 0.13 1 

28 77.5 59.42 49.86 0.13 0 

29 21.67 24.64 11.46 0.21 1 

30 19.75 26.94 2.48 0.1 1 

31 56 46.2 31.62 0.26 0 

32 25 26.86 53.73 0.43 0 

33 40 20 40.18 0.56 0 

34 56.67 62.52 15.89 0.05 0 

35 51.79 56 14.25 0.15 1 

36 96.67 71.41 21.37 0.05 0 

37 50.83 65 13.24 0.08 1 

38 34.33 36.28 5.85 0.1 1 

39 48.75 59.88 32.99 0.21 0 

40 25.8 23.62 28.89 0.24 1 

41 20 24.2 6.29 0.06 1 

42 16 17.09 33.34 0.66 0 



43 48.67 44.56 16.7 0.15 1 

44 20.78 34.46 4.2 0.03 1 

45 32.5 31.55 23.47 0.19 1 

46 19 26.94 8.28 0.1 1 

47 51.5 58.71 7.4 0.04 1 

48 49.17 65.74 7.71 0.02 1 

49 85 69.05 46.18 0.22 1 

50 58.75 57.54 14.98 0.11 1 

51 19.33 21.73 6.58 0.06 0 

52 5 6.17 13.68 0.18 0 

53 65 51 50.5 0.24 0 

54 20 18.25 16.12 0.32 0 

55 62.5 69.88 31.48 0.07 0 

56 35 26.68 58.6 0.23 0 

57 99.17 75.73 35.43 0.05 0 

58 40.25 41.77 4.53 0.08 1 

59 39.17 48.5 6.82 0.08 1 

60 37.5 21.89 43.7 0.36 0 

61 26.25 38.33 2.83 0.04 1 

62 52.14 53.95 42.54 0.25 0 

63 22.5 17.17 24.16 0.36 0 

64 90 82 7.89 0.03 1 

65 28 40.6 3.27 0.02 1 

66 50 53.89 53.16 0.24 0 

67 24.5 54.17 5.57 0.06 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analysis of Data before regression: 

 

Var rent allrent cows pasture liming 

rent 1 0.87577 0.30857 -0.32338 -0.08895 

allrent 0.87577 1 0.04872 -0.49982 0.08896 

cows 0.30857 0.04872 1 0.5226 -0.58344 

pasture -0.32338 -0.49982 0.5226 1 -0.42678 

liming -0.08895 0.08896 -0.58344 -0.42678 1 

 

The predictor variables do not seem to have major collinearity issues. Pasture, however, does not seem to be linearly 

related to the response variable. 

Pasture and liming seem to have a negative impact on the response variable. 

 

 



Part I 

Question 1) Choose a predictor of your choice and conduct piecewise SLR to model the relationship with response 

variable. Be smart about choosing the point at which the two pieces change slope, if none of the predictors  has 

curved relationship with the response then the center should be your point where the two pieces meet. Determine 

whether the two pieces are the same. 

proc sort data=alfalfa; 

by cows; 

symbol1 v=C i=sm70; 

proc gplot data= alfalfa; 

plot rent*cows; 

run; 

data alfalfaone; set alfalfa; 

if cows le 30 

then cslope = 0; 

if cows gt 30 

then cslope = cows-30; 

run; 

proc print data=alfalfaone; 

run; 

 

proc reg data=alfalfaone; 

model rent = cows cslope; 

output out = alfalfaout p = renthat; 

run; 

symbol1 v=circle i=none c=black; 

symbol2 v=none i =join c=black; 

proc sort data=alfalfaout; by cows; 

proc gplot data=alfalfaout; 

plot (rent renthat)*cows/overlay; 

run; 

 



 

 

Checking if both lines are the same 

Both lines will be same is slope of cslope is zero. 

proc reg data=alfalfaone; 

model rent = cows cslope; 

test cslope; 

run; 

Result: yes, both lines are the same since we cannot reject the null hypothesis that slope of cslope is zero. 

 

 

 

 

 



Question 2) 

Creation of sum using ‘allrent’ and ‘cows’ as predictor variables. 

data alfalfa2; 

set alfalfa; 

sum=allrent +cows; 

run; 

Run the regression using all predictor variables except the variables used to create sum 

Predict response a) using all explanatory variables b) and sum 

Output 
Case A: 

pasture liming 
Case B: 

sum pasture liming 

Obs 
Dependent 

Variable 
Predicted 

Value 
Residual 

Predicted 
Value2 

Residual2 

1 18.38 43.44 -25.06 15.883 2.497 

2 20 33.7592 -13.7592 25.0855 -5.0855 

3 11.5 51.7274 -40.2274 13.3206 -1.8206 

4 25 39.2841 -14.2841 25.3796 -0.3796 

5 52.5 57.2523 -4.7523 63.9929 -11.4929 

6 82.5 44.1184 38.3816 67.9879 14.5121 

7 25 41.3681 -16.3681 33.4509 -8.4509 

8 30.67 40.6653 -9.9953 31.3986 -0.7286 

9 12 31.6995 -19.6995 1.5071 10.4929 

10 61.25 44.809 16.441 56.2846 4.9654 

11 60 51.7274 8.2726 51.4079 8.5921 

12 57.5 54.4898 3.0102 70.5222 -13.0222 

13 31 33.0685 -2.0685 34.7669 -3.7669 

14 60 48.2743 11.7257 61.9967 -1.9967 

15 72.5 56.5617 15.9383 64.5979 7.9021 

16 60.33 48.9649 11.3651 70.6935 -10.3635 

17 49.75 37.9151 11.8349 58.6507 -8.9007 

18 8.5 54.4898 -45.9898 10.6386 -2.1386 

19 36.5 43.44 -6.94 24.3921 12.1079 

20 60 44.1184 15.8816 63.1297 -3.1297 

21 16.25 10.2905 5.9595 10.6782 5.5718 

22 50 34.4498 15.5502 47.8913 2.1087 

23 11.5 40.6653 -29.1653 15.5149 -4.0149 

24 35 42.0465 -7.0465 37.5994 -2.5994 

25 75 53.7992 21.2008 61.3091 13.6909 

26 31.56 35.831 -4.271 35.1685 -3.6085 

27 48.5 38.5935 9.9065 40.5955 7.9045 

28 77.5 51.0367 26.4633 75.3656 2.1344 

29 21.67 33.0685 -11.3985 21.3196 0.3504 

30 19.75 40.6653 -20.9153 20.2858 -0.5358 

31 56 42.0587 13.9413 47.9658 8.0342 

32 25 30.3183 -5.3183 44.0699 -19.0699 

33 40 21.3403 18.6597 24.7065 15.2935 

34 56.67 56.5617 0.1083 55.6961 0.9739 



35 51.79 37.2122 14.5778 48.242 3.548 

36 96.67 56.5617 40.1083 66.147 30.523 

37 50.83 42.0465 8.7835 56.4866 -5.6566 

38 34.33 40.6653 -6.3353 29.5295 4.8005 

39 48.75 45.5118 3.2382 60.6497 -11.8997 

40 25.8 30.9967 -5.1967 32.2111 -6.4111 

41 20 43.4278 -23.4278 22.4547 -2.4547 

42 16 14.4341 1.5659 14.1388 1.8612 

43 48.67 37.2122 11.4578 41.7038 6.9662 

44 20.78 45.4996 -24.7196 29.4396 -8.6596 

45 32.5 34.4498 -1.9498 35.7749 -3.2749 

46 19 40.6653 -21.6653 24.504 -5.504 

47 51.5 44.809 6.691 49.0555 2.4445 

48 49.17 46.1902 2.9798 55.0891 -5.9191 

49 85 32.3779 52.6221 78.521 6.479 

50 58.75 39.9747 18.7753 51.2836 7.4664 

51 19.33 55.871 -36.541 18.9121 0.4179 

52 5 47.5837 -42.5837 8.5873 -3.5873 

53 65 43.44 21.56 65.883 -0.883 

54 20 37.9151 -17.9151 14.2798 5.7202 

55 62.5 55.1804 7.3196 71.6917 -9.1917 

56 35 44.1306 -9.1306 54.4343 -19.4343 

57 99.17 56.5617 42.6083 79.5143 19.6557 

58 40.25 42.0465 -1.7965 33.2576 6.9924 

59 39.17 42.0465 -2.8765 39.8176 -0.6476 

60 37.5 35.1526 2.3474 35.5945 1.9055 

61 26.25 44.809 -18.559 30.9101 -4.6601 

62 52.14 42.7494 9.3906 61.8917 -9.7517 

63 22.5 35.1526 -12.6526 17.9509 4.5491 

64 90 45.4996 44.5004 66.6978 23.3022 

65 28 46.1902 -18.1902 33.5763 -5.5763 

66 50 43.44 6.56 69.9194 -19.9194 

67 24.5 43.4278 -18.9278 43.7275 -19.2275 

 

 

 

 

 

 

 

 

 

 



Calculate extra sum of squares for the comparison of these two analyses.  

 

SSM(sum|pasture liming) = SSM(sum pasture liming) – SSM(pasture liming) 

                    = 27503 – 5641.64264 

                    = 21861.3574 = 21862 

F statistic: 
SSM(sum|pasture liming)

𝑑𝑜𝑓
 / MSE(full model) = (

21861.3574

1
) / 97.88451 = 223.338 =  223.34 

Degree of freedom of this F statistic = 1,63 

 

(b) Use test statement to obtain the same statistics. Give the test statistic, degree of freedom, p-value and conclusion. 

proc reg data=alfalfa2; 

model rent = sum pasture liming/ p; 

id sum pasture liming; 

remove : test sum; 

run; 

 

Conclusion: Since p value is less than the α value we conclude that the statistic is significant and we reject the null 

hypothesis: H0 = Sum = 0 

 



( c) Compare the test statistic and p-value  from the test statement with the individual t-test for the coefficient  of 

SUM variable in full model. Explain the relationship. 

 

The p-value from the General Linear test we conducted is the same as individual t-test for coefficient of sum in full 

model. 

Relationship: t2=F = (14.94)2 = 223.2036 

 

(3) Run regression to predict response using all variables, excluding sum. Use SS1 and SS2. Add type I sum of squares, 

do the same for type II. Do either sum to model sum of squares? Are any predictors for which the two are same? 

Explain why. 

proc reg data=alfalfa2; 

model rent = allrent cows pasture liming/ss1 ss2; 

run; 

 

Type I SS Sum for all predictor variables = 28295.1154 

Type II Sum for all predictor variables = 15681.5662 

 

Type I SS Sum for all predictor variables = Model Sum of Squares. 



Reason: 

Type I SSM (cows) = SSM (allrent cows) -SSM(allrent) 

Type I SSM (pasture) = SSM (allrent cows pasture) -SSM (allrent cows) 

Type I SSM (liming) = SSM (allrent cows pasture liming) – SSM (allrent cows pasture) 

Adding these together: 

Type I SSM (allrent+cows+pasture+liming) = SSM (allrent cows pasture liming) 

 

Type I SSM = Type II SSM for variable added last, in our case: liming. 

Reason: 

Type I SSM = Extra sum of squares for a variable after all the variables prior to it in the order of addition in model have 

been included, which is equal to Type II (extra sum of squares for a variable after adding all the other variables in the 

model) in case of the variable that is added last in the model. 

 

(4) Run regression to predict the response using a variety of variables, including sum as an explanatory variable, 

Summarize the result by making a table giving the percentage of variation explained by each model. 

proc reg data=alfalfa2; 

model rent = allrent sum; 

model rent = cows sum; 

model rent = pasture sum; 

model rent = liming sum; 

model rent = allrent cows sum; 

model rent = allrent pasture sum; 

model rent = allrent liming sum; 

model rent = cows pasture sum; 

model rent = cows liming sum; 

model rent = pasture liming sum; 

model rent = allrent cows pasture liming sum; 

run; 

 

 

 

Variables R squared 

rent = allrent sum    0.8379 

rent = cows sum    0.8379 

rent = pasture sum    0.8155 

rent = liming sum    0.7787 

rent = allrent cows sum   0.8379 

rent = allrent pasture sum   0.84 

rent = allrent liming sum   0.838 

rent = cows pasture sum   0.84 

rent = cows liming sum   0.838 

rent = pasture liming sum   0.8168 

rent = allrent cows pasture liming sum 0.8404 



 

 

Part II 

(1) Using techniques learned in class, determine whether the response variable and any of the predictors need to 

be transformed. Indicate the reasoning for your decision. If a variable need to be transformed, transform it 

and keep it in the full model for the rest of the questions. 

Regression on original model: 

 



 

BOXCOX approach 

The residuals clearly have a megaphone effect, thus applying box cox to predict a better model. The best lambda is 0.5. 

Also, since pasture was not linearly related to the response variable, using e-pasture in place of pasture as predictor 

variable. 

 



 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(2) Use Cp criterion to select the best subset of variables for your data. Use original and transformed variables, 

not SUM. Summarize the results and explain your choice of best model. 

 

With modified response variables and modified predictor variables: Cp =1.9742 

proc reg data=transalfalfa; 

   model sqrtrent = allrent cows exppasture liming/ selection = cp b; 

   run; 

 

Result: sqrtrent = 2.37024 + 0.07380*allrent + 0.03199*cows 

 

 

 

 

 

 

 

 

 

 

 



With original response and predictor variables, Output: 1.9781 

proc reg data=alfalfa; 

model rent = allrent cows pasture liming/selection = cp b; 

run; 

rent = -6.11433 + .92137*allrent + .39255*cows 

 

 

With modified response variables and original predictor variables, No Cp is good enough 

proc reg data=transalfalfa; 

model sqrtrent= allrent cows pasture liming/selection = cp b; 

run; 

No model is good enough 

 

 

Now, since Cp came out to be less than p in both cases when response variable is rent and sqrrent, we are looking at the 

residual plot to decide out model. 

 



Model with modified rent and allrent and cows: Residual plot is good 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



Model with rent allrent cows: Residual Plot shows megaphone effect. 

 



 

 

 

Since , the residuals are random and P value is less than α for sqrtrent and allrent and cows taking that as a model. 

Result: sqrtrent = 2.37024 + 0.07380*allrent + 0.03199*cows 

 



(3) Use selection = stepwise criterion to report the best model 

 

We changed the significance level to 0.05 .SAS by default for stepwise selection uses 0.15 significance level. 

 
proc reg data= std; 

model sqrtrent= allrent cows epasture liming/slentry=0.05 slstay=0.05 selection = 

stepwise; 

   run; 

 

 

 

 



 

 
 



 
 

 

 

 

 

 

 
 



 

Thus the stepwise selection method gives us the best model as  

 

𝒔𝒒𝒓𝒕𝒓𝒆𝒏𝒕 =  𝜷𝟎 +  𝜷𝟏(𝒂𝒍𝒍𝒓𝒆𝒏𝒕)+ 𝜷𝟐 (𝒄𝒐𝒘𝒔) +  𝜺 

 

 

𝒔𝒒𝒓𝒕𝒓𝒆𝒏𝒕 =  𝜷𝟎 +  𝜷𝟏(𝒂𝒍𝒍𝒓𝒆𝒏𝒕)+ 𝜷𝟐 (𝒄𝒐𝒘𝒔)+ 𝜷𝟐 (𝒆𝒑𝒂𝒔𝒕𝒖𝒓𝒆)+ 𝜷𝟐 (𝒍𝒊𝒎𝒊𝒏𝒈) +  𝜺𝒊 

 

 

 

(4) Check the assumptions of this best model using all the usual plots. Explain in detail whether for not each 

assumption  appears to be substantially violated. 

 

The best model  is as follows: 

Response variable= Square-root of rent 

Predictors= Allrent and Cows 

 

      𝒔𝒒𝒓𝒕𝒓𝒆𝒏𝒕̂  = 2.37024 + 0.07380*allrent + 0.03199*cows 

 

title1 ' Initial Investigation of the predictors '; 

title2 ' Team-5 Division-03 ';  

goptions colors=(blue); 

symbol v=dot ; 

 

proc reg data=transalfalfa; 

model sqrtrent= allrent cows; 

output out=output r=resid1 p= pred1 ; 

run; 

 

           1. Linearity and Constant variance assumption : 

               Let us observe the scatter plot of each predictor against the response variable to examine the      

linearity and constant variation assumption. 

            a) Scatterplot of sqrtrent vs  allrent  

 

title1 'Investigation for linearity and Constant variance assumption '; 

title2 ' Team-5 Division-03 ';  

title3  'Scatterplot of Sqrt_rent Vs Allrent'; 

goptions colors=(blue); 

symbol v=dot ; 

/*------------------Q4 Linearity and Constant Variance assumption-------  */ 

proc gplot data= transalfalfa;  /* Scatterplot*/ 

plot sqrtrent* allrent ; 

run; 

 



        

 

Conclusion- The scatterplot does not show any striking deviation from linearity. In fact the data points are pretty close to 

least square line. Thus the allrent predictor follows a linear relationship with the  response variable. 

b) Scatterplot of sqrtrent vs  cows  

 

 

title1 'Investigation for linearity and Constant variance assumption '; 

title2 ' Team-5 Division-03 ';  

title3  'Scatterplot of Sqrt_rent Vs Cows'; 

goptions colors=(blue); 

symbol v=dot ; 

proc gplot data= transalfalfa;  /* Scatterplot*/ 

plot sqrtrent* cows; 

run; 

 



 

Conclusion- The scatterplot does not show any striking deviation from linearity. In fact the data points are pretty close to 

least square line. Thus the cows predictor follows a linear relationship with the  response variable. 

 

c) The residual plot for Sqrtrent vs cows: 

title1 'Investigation for linearity and Constant variance assumption '; 

title2 ' Team-5 Division-03 ';  

title3  'Residual plot resid vs cows'; 

proc gplot data= output;           /* Residual plot for residual vs Cows*/ 

plot resid1*cows /vref=0; 

run; 



 

Conclusion- The Residual plot does not show any striking deviation from random pattern. Thus the cows predictor does 

not violate the constant variance assumption. 

d) The residual plot for Sqrtrent vs allrent: 

title1 'Investigation for linearity and Constant variance assumption '; 

title2 ' Team-5 Division-03 ';  

title3  'Residual plot resid vs allrent'; 

proc gplot data= output;          /* Residual plot for residual vs AllRent*/ 

plot resid1* AllRent /vref=0; 

 

run; 

 



 

Conclusion- The Residual plot does not show any striking deviation from random pattern. Thus the allrent predictor does 

not violate the constant variance assumption. 

 

2) Normality 

a) Histogram of the residuals 

title1 'Rent for land planted to Alfalfa '; 

title2 ' Team-5 Division-03 ';  

title3  'Qqplot'; 

 

 

proc univariate data=output plot;  

var resid1; 

histogram resid1 / normal ;   /* The histogram has a perfect bell shape!! :)*/ 

qqplot resid1;  

run; 



 

 

Conclusion- The Histogram depicts almost a perfect bell shape, thus the normality assumption does not seen to be 

violated. 

 

b) Qqplot/ Normal Quantile plot 

 



Conclusion- The QQplot does not show any striking deviation from the 45 degree line through origin. Thus it is safe to 

assume the normality of response variable. 

 

3) Independence  

data output; 

set output; 

seq=_n_; 

proc print data= output; 

run; 

 

proc gplot data= output;          /* Residual plot for residual vs AllRent*/ 

plot resid1* seq ; 

 

run; 

 

ConclusionThe Sequence plot does not show any striking deviation from random patterm. Thus it is safe to assume 

Independence of the residuals. 

 



(5) Use the best model to predict the response variable. Examine other diagnositics such as studentized, Cook’s 

etc. Explain any problems such as outliers, highly influential observations or multicollinearity that these 

diagnostics point out. 

Examination of Diagnostics 

 

Examinations of diagnostics are done for : 

1) Outliers: 

 

Can be diagnosed by observing Studentized residuals, semi Studentized residuals and Studentized deleted 

residuals 

 

2) Influencial observations: 

 

Can be diagnosed by observing Cook’ distance , hat matrix , DFFITS , DFBETAS 

 

3) Multicollinearity issue:  

 

Can be examined by metrics such as tolerance and VIF along with the partial residual plots. 

 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows/r influence alpha= 0.05; 

plot r.*(allrent cows); 

output out=datatrans p=sqrt_renthat r=resid; 

run; 

 



 
 



 

a) Studentized Residuals-  

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /r influence alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid student=Studentized; 

run; 

 

proc univariate data= datatrans; 

var studentized; 

run; 

 

 

After observing the student residual column in the output statistics , we notice that there exists no 

Studentized residual < -3 or Studentized residual >3, thereby implying there is no striking outlier based on this criteria. 

It is also very clear from the chart shown just above. None of the horizontal bars have crossed the 3/-3 boundaries. 

Thus, according to the Studentized residual criterion, we have no possible outlier in our data set.  

b) Studentized deleted Residuals- 

 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /r influence alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid; 

run; 

 

proc print data=datatrans; 

run; 

proc univariate data= datatrans; 

var deleted_resid; 

run; 

 

 

 



Here, tc (n-p-1, 1-
𝛼

2𝑛
) =  t(n-p-1, 1-

0.05

134
)                             From our data set, n= 67, p=3 

                                    = t(63, 1-(0.0003731)) 

                                    = -3.551 

|tc| = 3.545 

Thus, after examining the R student column of the output statistics,  

We observe that there is no |ti| > |tc|;  

Thus, according to the Studentized  deleted residual criterion, we have no possible outlier in our data set.  

Also, we verified the same by executing a proc univariate over the regression output for the variable deleted_residual . 

The table shown below delineates the extreme values obtained for the deleted residuals, as we can clearly see that: 

 the highest extreme value(|2.43|) <| -3.545| and  

the lowest extreme value(|-2.58|) < |3.545| . 

Thus it verifies our claim that there exists no possible outlier according to the Studentized deleted residual criterion. 

 

 

 

 

 

 

 

 



c) Cook’s Distance  

 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /r influence alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid cookd=cook_distance; 

run; 

 

proc print data=datatrans; 

run; 

 

proc univariate data= datatrans; 

var cook_distance; 

run; 

 

From our data set, n= 67, p=3  

F  critical (p-1, n-p) = F(2, 64)at 50th percentile= 0.7 

Thus, after examining the Cook’s D column of the output statistics,  

We observe that there is no distance > Fc;  

Thus, according to the Cook’s Distance criterion, we have no possible influential observation in our data set.  

Also, we verified the same by executing a proc univariate over the regression output for the variable cook_distance . 

The table shown below delineates the extreme values obtained for the deleted residuals, as we can clearly see that: 

 the highest extreme value(0.18) <Fc (0.7),   

Thus it verifies our claim that there exists no possible influential observation according to the Cook’s distance criterion. 

 

 

 

 

 



c) Hat Matrix: 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /r influence alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid cookd=cook_distance 

h=hat_matrix; 

run; 

 

proc print data=datatrans; 

run; 

 

proc univariate data= datatrans; 

var hat_matrix; 

run; 

 

 hc= 
2𝑝

𝑛
 = 

6

67
= 0.089 

 

Thus, values lager than 0.089 would be considered potential influential observations 

 

 

 

We can observe from the table that the two observations 66 and 67 have the hat matrix diagonal values 

greater than 0.089. Thus these two data points are influential. 

Thus, according to the Hat matrix diagonal criterion, we two (66 , 67) possible influential observation in our data set.  

 

From the Scatterplot (shown below) of cows vs SqrtRent, we can see that the observations 66 (corresponding 

cows value= 53) and 67 corresponding cows value= 58) are slightly influential.   



 

 

c) DFFITS: Measure of influence of case i on its  𝑌𝑖̂ 

 
proc reg data= transalfalfa; 

model sqrtrent= allrent cows /r influence alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid cookd=cook_distance 

h=hat_matrix dffits=df_fit; 

run; 

 

proc univariate data= datatrans; 

var df_fit; 

run; 

 

Our dataset has n=67 observations, thus we consider it as a medium sized data set. 

In the DFFITS column of the output statistics, there exists no entry whose value is larger than 1. Thus,  

Thus, according to the DFFITS criterion, there are no possible influential observations in our data set.  

 



d) DFBETAS: Measure of influence of case i on each of the regression coefficients. 

 

Our dataset has n=67 observations, thus we consider it as a medium sized data set. 

In the DFFITS columns for intercept, allrent and cows of the output statistics, there exists no entry whose 

value is larger than 1. Thus,  

Thus, according to the DFBETAS criterion, there are no possible influential observations in our data set.  

 

e) VIF (Variation Inflation Factor) 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /vif tol alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid cookd=cook_distance 

h=hat_matrix; 

run; 

The VIF for both the predictors viz. allrent and cows is approximately 1.0 , which is < 10.  

Thus, according to the VIF criterion, there exists no excessive multicollinearity issue.  

f) Tolerance 

proc reg data= transalfalfa; 

model sqrtrent= allrent cows /vif tol alpha= 0.05; 

output out= datatrans p=sqrt_renthat r=resid rstudent= deleted_resid cookd=cook_distance 

h=hat_matrix; 

run; 

The tolerance values for both the predictors is 0.99763 which is <0.1.  

Thus, according to the Tolerance criterion, there exists no excessive multicollinearity issue.  

 

g) Partial residual plots 

Analyzing the worth of Allrent in the model. 

 

proc reg data= transalfalfa; 

model sqrtrent allrent= cows / alpha= 0.05; 

output out= partialAllrent p=sqrt_renthat r=resid_sqrt_rent resid_allrent; 

run; 

 



title1 'Partial residual plot' 

title2 ' for allrent '; 

symbol v=circle i=rl; 

axis1 label= ('Allrent'); 

axis2 label= (angle=90 'Total rent'); 

 

 

proc gplot data= partialAllrent;  

plot resid_sqrt_rent * resid_allrent / haxis=axis1 vaxis=axis2 vref = 0; 

run; 

 

 

 

As we can see a high value of r, thus indicating there is much to be gained by including allrent in the model. 

Analyzing the worth of cows in the model. 

 

 

 

 

 

 



 

proc reg data= transalfalfa; 

model sqrtrent cows= allrent / alpha= 0.05; 

output out= partialAllrent p=sqrt_renthat r=resid_sqrt_rent resid_cows; 

run; 

 

title1 'Partial residual plot'; 

title2 ' for cows '; 

symbol v=circle i=rl; 

axis1 label= ('Cows'); 

axis2 label= (angle=90 'Total rent'); 

 

 

proc gplot data= partialAllrent;  

plot resid_sqrt_rent * resid_cows / haxis=axis1 vaxis=axis2 vref = 0; 

run; 

 

As we can see a fairly good value of r, thus indicating there is much to be gained by including cows in the model. 

In both the scatterplots, we can see the points are closer to the regression line than to the X –axis. Thus, there is much 

to be gained from adding both the predictors. 

 

 

 

 

 



(6) For the best model report the following: 

(a) Equation of the regression model 

Result: sqrtrent = 2.37024 + 0.07380*allrent + 0.03199*cows 

(b) 90% confidence interval for the mean of the response variable 

(c) 90% prediction interval for individual observations 

(d) 90% confidence intervals for regression coefficients 

 
proc reg data=transalfalfa; 

model sqrtrent = allrent cows/ clm cli clb alpha=0.1; 

run; 

 

Obs 
Dependent 

 Variable 
Predicted 

 Value 

Std 
Error 
Mean 

Predict 

90% CL Mean 
90% CL Predict 

 

 
Residuals Residual 

1 4.2872 4.066 0.1345 3.8415 4.2904 2.9494 5.1825 0.2212 

2 4.4721 4.6074 0.1144 4.4164 4.7983 3.497 5.7177 -0.1352 

3 3.3912 3.6384 0.1502 3.3877 3.8892 2.5163 4.7606 -0.2473 

4 5.000 4.8972 0.1198 4.6973 5.0972 3.7853 6.0091 0.1028 

5 7.2457 8.7359 0.1939 8.4124 9.0595 7.5953 9.8766 -1.4903 

6 9.083 8.3538 0.1355 8.1277 8.58 7.2369 9.4708 0.7291 

7 5.000 5.3712 0.1177 5.1747 5.5677 4.2599 6.4826 -0.3712 

8 5.5381 5.4897 0.1175 5.2936 5.6858 4.3784 6.6009 0.0484 

9 3.4641 3.5648 0.1543 3.3073 3.8223 2.4411 4.6885 -0.1007 

10 7.8262 7.7054 0.149 7.4568 7.954 6.5837 8.8271 0.1208 

11 7.746 6.8231 0.0893 6.674 6.9722 5.7191 7.927 0.9229 

12 7.5829 8.4614 0.1357 8.2349 8.6879 7.3444 9.5784 -0.8785 

13 5.5678 5.2074 0.1137 5.0177 5.3971 4.0972 6.3175 0.3604 

14 7.746 7.9661 0.1178 7.7694 8.1627 6.8547 9.0774 -0.2201 

15 8.5147 8.4919 0.1565 8.2306 8.7531 7.3673 9.6165 0.0228 

16 7.7672 8.1661 0.1619 7.8958 8.4364 7.0394 9.2928 -0.3989 

17 7.0534 7.9082 0.127 7.6963 8.1201 6.7941 9.0224 -0.8549 

18 2.9155 3.3188 0.164 3.0451 3.5925 2.1913 4.4464 -0.4033 

19 6.0415 4.6551 0.1207 4.4537 4.8565 3.5429 5.7673 1.3864 

20 7.746 8.5227 0.1884 8.2082 8.8372 7.3845 9.6608 -0.7767 

21 4.0311 4.7141 0.1343 4.4899 4.9382 3.5975 5.8306 -0.6829 



22 7.0711 6.7671 0.0841 6.6268 6.9074 5.6643 7.8699 0.304 

23 3.3912 3.9933 0.1513 3.7408 4.2458 2.8707 5.1159 -0.6021 

24 5.9161 6.0011 0.1141 5.8107 6.1915 4.8908 7.1113 -0.085 

25 8.6603 7.9435 0.1169 7.7484 8.1386 6.8324 9.0546 0.7168 

26 5.6178 5.6902 0.0878 5.5436 5.8368 4.5866 6.7938 -0.0724 

27 6.9642 6.3908 0.11 6.2072 6.5744 5.2817 7.4999 0.5734 

28 8.8034 8.3504 0.1815 8.0475 8.6533 7.2154 9.4854 0.453 

29 4.6551 4.5552 0.1168 4.3604 4.7501 3.4442 5.6663 0.0999 

30 4.4441 4.4377 0.1377 4.2079 4.6675 3.32 5.5554 0.006394 

31 7.4833 6.7913 0.0992 6.6257 6.9568 5.685 7.8975 0.692 

32 
5.000 

 
6.0713 0.2052 5.7288 6.4138 4.9251 7.2175 -1.0713 

33 6.3246 5.1316 0.1617 4.8617 5.4014 4.005 6.2582 1.193 

34 7.5279 7.4924 0.1113 7.3067 7.6782 6.383 8.6019 0.0355 

35 7.1965 6.9588 0.0995 6.7928 7.1248 5.8525 8.0651 0.2377 

36 9.8321 8.3238 0.1328 8.1022 8.5454 7.2078 9.4398 1.5083 

37 7.1295 7.5907 0.1219 7.3873 7.7941 6.4781 8.7032 -0.4612 

38 5.8592 5.2348 0.114 5.0446 5.425 4.1246 6.345 0.6244 

39 6.9821 7.8447 0.1189 7.6462 8.0431 6.733 8.9563 -0.8625 

40 5.0794 5.0376 0.1204 4.8366 5.2386 3.9254 6.1497 0.0418 

41 4.4721 4.3574 0.1305 4.1396 4.5752 3.2421 5.4727 0.1148 

42 4.000 4.698 0.1479 4.4511 4.9449 3.5767 5.8193 -0.698 

43 6.9764 6.1929 0.0827 6.0549 6.331 5.0905 7.2954 0.7835 

44 4.5585 5.0477 0.1215 4.8448 5.2505 3.9352 6.1601 -0.4892 

45 5.7009 5.4494 0.094 5.2924 5.6064 4.3444 6.5544 0.2515 

46 4.3589 4.6232 0.1194 4.4239 4.8226 3.5114 5.7351 -0.2644 

47 7.1764 6.9397 0.1221 6.7358 7.1435 5.827 8.0523 0.2367 

48 7.0121 7.4684 0.1366 7.2403 7.6964 6.3511 8.5857 -0.4563 

49 9.2195 8.9433 0.181 8.6413 9.2454 7.8086 10.0781 0.2762 

50 7.6649 7.0958 0.1012 6.9269 7.2647 5.989 8.2026 0.569 

51 4.3966 4.1844 0.135 3.959 4.4097 3.0676 5.3012 0.2122 

52 2.2361 3.2632 0.1664 2.9855 3.5409 2.1347 4.3917 -1.0271 



53 8.0623 7.7495 0.1778 7.4527 8.0463 6.6161 8.8828 0.3128 

54 4.4721 4.2327 0.127 4.0207 4.4448 3.1186 5.3469 0.2394 

55 7.9057 8.5343 0.1385 8.3031 8.7656 7.4164 9.6523 -0.6286 

56 5.9161 6.2138 0.228 5.8333 6.5944 5.0557 7.372 -0.2978 

57 9.9584 9.0924 0.1632 8.8201 9.3647 7.9652 10.2196 0.866 

58 6.3443 5.5977 0.1163 5.4036 5.7919 4.4868 6.7086 0.7466 

59 6.2586 6.1676 0.1101 5.9839 6.3514 5.0585 7.2768 0.091 

60 6.1237 5.3837 0.1707 5.0988 5.6686 4.2534 6.514 0.74 

61 5.1235 5.2895 0.1239 5.0826 5.4963 4.1763 6.4027 -0.166 

62 7.2208 7.7125 0.1446 7.4712 7.9539 6.5924 8.8327 -0.4917 

63 4.7434 4.4103 0.131 4.1915 4.629 3.2948 5.5257 0.3332 

64 9.4868 8.6741 0.1824 8.3697 8.9786 7.5387 9.8095 0.8127 

65 5.2915 5.4711 0.1214 5.2685 5.6737 4.3587 6.5835 -0.1796 

66 7.0711 8.0479 0.1917 7.7279 8.3678 6.9082 9.1875 -0.9768 

67 4.9497 6.5461 0.1207 6.3446 6.7476 5.4339 7.6583 -1.5963 

 

 

 


